

FIRECEL

The Last Cable Standing

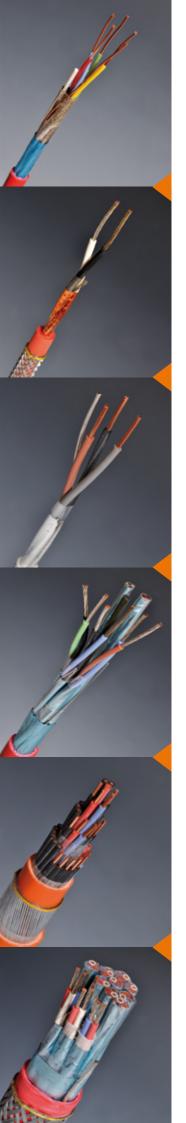
FIRE RESISTANT CABLES

CORPORATE VIDEO

ISO 9001:2015 Certificate No. CS1-249

Assessed to ISO 9001:2015 Cert/LPCB ref. 217

ISO 9001:2015 n. 9125.CAVL



Our commitment to environmentally friendly products.

CAVICEL is committed to providing our customers with environmentally friendly products in compliance with the European Union (EU) RoHS Directive (Restriction of Hazardous Substances) and REACH Regulation (Registration, Evaluation, Authorization and Restriction of Chemicals).

The Last Cable Standing

CABLES VS FIRE

Fires have a high cost in terms of loss of human life and damages to plants and structures.

Fire is the major cause of destruction, but we must consider that one of the main causes of death are the inhalation of toxic gas that develop and the presence of dense smoke, interfering with the identification of escape routes.

It has to be kept into consideration, then, that even the most sophisticated alarm systems or emergency systems can be useless if their performances are compromised by the destruction of the cables caused by the fire. This is the reason why, over the last few years, the companies have strongly invested in design and development of insulation materials and cables granting the best performances in case of fire, while reducing fumes and acid gases emission and granting the circuit integrity even in case of fire.

Cavicel has been present for more than 30 years onto the market with its own research, products and experience.

Experience is our Power.

With this catalogue we try to show you our experience, our way of thinking and operating in the creation of fire resistant cables.

We believe the cables you will see are good practical examples. When it comes to your own cable we can co-design it together: you let us know your specific situation and we will create your cable all around it.

Cavicel can create it for you.

Fire Performance

CABLES HAVE TO BE **PROPERLY** DESIGNED, MANUFACTURED AND ALSO TESTED.

The behavior of cables concerning flame presence covers various aspects.

A first feature is how the cable reacts in these circumstances. This brought us to consider two performances:

FLAME RETARDANT FIRE RESISTANT

Flame retardant cables can resist the spread of fire, but due to fire the cable is fully destroyed and no circuit integrity is assured. All the systems connected to cables are completely out of work.

Flame retardant cables are not intended to assure service during a fire but are chosen to prevent the flame spreading.

Fire resistant cables maintain circuit integrity and continue to work in the presence of fire. It is important for fire alarm systems, emergency lighting, voice alarm systems.... In this case it is possible to assure building evacuation, alarm signals, activation of extinguishing systems.

Fire resistant cables are always as well Flame retardant as they assure the highest level of security during a fire.

GAS EMISSION / SMOKE DENSITY

Other features should be considered n this context. More precisely, these are the quality and the quantity of gas that are developed during the fire.

In fact, the cause of fire victims often doesn't only consists in the presence of fire, but it's also due to the gases that develop from the burning of materials.

One of the most popular material used for insulation and jacket for electrical cables is PVC.

This material can show excellent flame retardant properties, due to the presence of chlorine in the compound, that is a flame suppressant. On the other hand, chlorine is a corrosive and toxic gas and it develops an heavy smoke. All of these characteristics have to be avoided in case of fire.

This is why the following features have to be considered:

Absence of halogen (acid gas)in the cables Low emission of smoke

Specific tests, according to different standards, are therefore defined to verify this performance.

The tests are part of R&D, an extremely strategic activity for a Company and this is the reason why CAVICEL has invested in this field.

You can find here the main tests concerning the behaviour of cables under fire conditions, and our main test equipments. It is important to verify all required performances and give the customers the full compliance to the requirements. CAVICEL is proud of its own laboratories and customers are always welcome to visit them.

BS 6387

Following tests are carried out to verify if a cable is capable of maintaining circuit integrity under fire condition, fire with water, and fire with mechanical shocks. During the tests the cables are maintained at their rated voltage.

▶ Fire Resistance (CAT. A B <u>C</u> S)

The cable is exposed to fire at the specified temperature and time.

▶ Fire and Water Resistance (CAT. <u>W</u>)

The cable is exposed for 15 minutes to flame at 650°C and for additional 15 minutes to fire and water spray.

▶ Fire Resistance with Mechanical Shocks (CAT. X Y Z)

The cable is mounted on a vertical panel and shocked with a steel bar for 15 minutes while submitted to the action of a flame.

Flame

Performance Table

TEST	CATEGORY
Fire Resistance	
650 °C for 3 hours	A
750 °C for 3 hours	В
950 °C for 3 hours	С
950 °C for 20 minutes	S

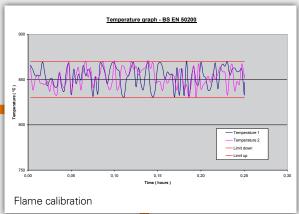
TEST	CATEGORY
Resistance to Fire and Water	
650 °C	W
Resistance to Fire with Mechanica	l Shock
650 °C	X
750 °C	Y
950 °C	Z

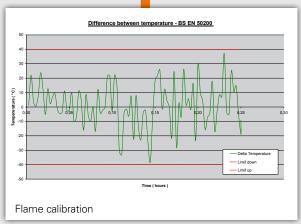
BS EN 50200

▶ Fire Resistance

This test is carried out to verify the circuit integrity of cables exposed to fire at 830°C and mechanical shocks.

CLASSIFICATION	
PH 15	flame exposure for 15 min
PH 30	flame exposure for 30 min
PH 60	flame exposure for 60 min
PH 90	flame exposure for 90 min
PH 120	flame exposure for 120 min




BS EN 50200 annex E (STANDARD CABLE - BS 5839-1 - CLAUSE 26.2D)

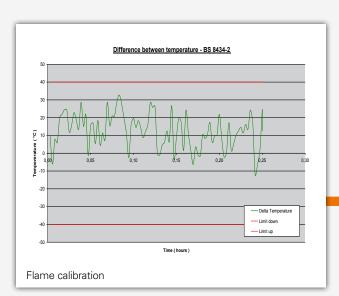
▶ Fire Resistance

This test is carried out to verify circuit integrity during a fire. The cable is exposed to a flame at 830°C and mechanical shocks for 15 minutes and additional 15 minutes to flame, mechanical shocks and water spray.

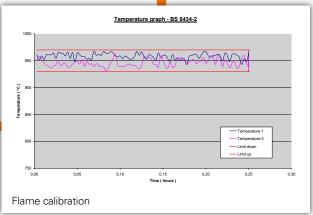
Cavicel, Conducting Value

7

BS 8434-2 (ENHANCED CABLE - BS 5839-1 - CLAUSE 26.2E)


▶ Fire Resistance

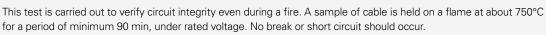
This test is carried out to verify circuit integrity during a fire. The cable is exposed to a flame at 930°C and mechanical shocks for 60 minutes and additional 60 minutes to flame, mechanical shocks and water spray.



BS 8491:2008

▶ Fire Resistance

Method for assessment of fire integrity of large diameter power cables. This test is carried out to verify circuit integrity of cables exposed to fire, mechanical shock and water spray. A sample of cable is held on a flame about 830°C, for a minimum of 120 minutes. The sample is subject of a mechanical shock, directly on the cable, every 10 minutes. 5 minutes before the end of the test, the cable is run over by a strong jet of water (2,5 l/min.) for a period of 5 seconds, at intervals of 60 seconds.



IEC 60331, CEI 20-36

▶ Fire Resistance

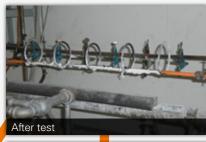
The test can also be performed in more severe conditions, up to 1100 °C.

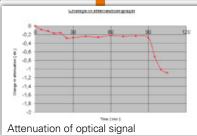
Fibre optic cables can be tested in same conditions, monitoring the attenuation of the signal of one or more fibres.

CEI 20-36/2-1 – IEC 60331-21 – Electrical cables up to 0,6/1 kV CEI 20-36/2-3 – IEC 60331-23 – Data cables

CEI 20-36/2-5 - IEC 60331-25 - Fibre optic cables

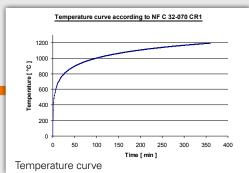
COPPER CABLE





FIBER CABLE

NF C 32-070 CR1


▶ Fire Resistance

This test is carried out to verify circuit integrity during a fire. The cable is into a tubular oven with gradually increasing of temperature up to 920°C. The cable is stressed by mechanical shocks and subjected to tensile strength.

FIRE AND FLAME PROPAGATION

Cavicel Fire Laboratory

BS EN 60332-3 | IEC 60332-3, CEI 20-22/3

▶ Fire propagation test on bunched cables

Samples of cables 3,5 m long in quantities required by standard are installed on a ladder inside a metallic cabinet. They are subjected to the action of a flame at 750°C for a specific time (20 or 40 minutes). Cables must not burn for more than 2,5 m.

BS EN 60332-1 IEC 60332-1, CEI 20-35/1

BS EN 60332-2 IEC 60332-2, CEI 20-35/2, for small diameter cables

▶ Flame Propagation Test on a Single Cable

A 60 cm long sample of cable is vertically fixed with two clamps inside a small cabin, open on the front. The cable is subjected to the action of a flame produced by a calibrated Bunsen burner. The application time of the flame is according to the cable diameter (60-480 seconds). At the end of the test the burnt portion of cable must not be 50 mm close to the higher clamp.

BS EN 60754-1 IEC 60754-1, CEI 20-37/2-1

▶ HCI Emission

Each non metallic material of the cable (~1.0 g) is burnt into a tube furnace up to 800 °C. A controlled air flow rate absorbs the generated gases in a appropriate solution.

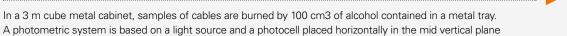
The tritation of the solution allows to determine the developed hydrochloric acid (HCI) amount.

BS EN 60754-2 IEC 60754-2, CEI 20-37/2-2

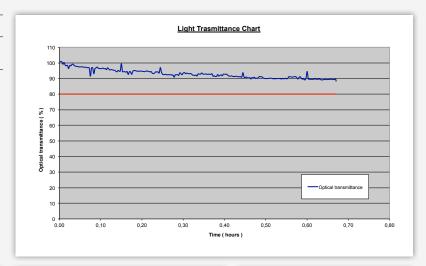
▶ Gas Corrosivity

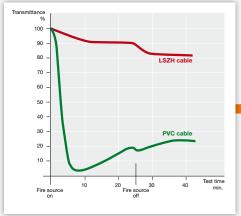
This test allows estimation of corrosiveness against metals of gases released when cables burn. Materials composing the cable are burnt into a tubular oven with temperature higher than 935 °C. A controlled air flow rate absorbs the generated gases in a specific distilled water solution. pH and conductivity are finally measured.

STANDARD	REQUIRED VALUES
BS EN 50267-2-2, IEC 60754-2,	pH ≥ 4,3
CEI 20-37/2-2	Conductivity ≤ 100 μS.cm-1



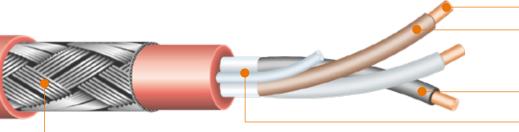
BS EN 61034-2 IEC 61034-2, CEI 20-37/3


of the cube, at height of 2.15 m. Absorbance or light transmission are measured.


▶ Smoke Density

STANDARD REQUIRED VALUES BS EN 61034-2, IEC 61034-2, ≥ 60% or 80%v CEI 20-37/3 (Transmittance - LT)

CONSTRUCTION AND GENERAL INFORMATION


Sheath

To optimize the behaviour in case of fire, the sheath is made of LSZH (Lows Smoke Zero Halogen) materials since, thanks to that, fire is not propagated, toxic or corrosive gases are not developed and a minimum quantity of white fumes are emitted.

Other materials can obviously be used in case of specific installation requirements, such as:

PVC, for example, where a higher resistance to oils and chemicals is required (but this material contains halogens, so it emits acid gas and smoke).

PE, when a higher resistance to water and moisture is required (this material is no anti-flame, though).

Armouring

Metallic armour are used when cables have to be installed by direct buried, or if mechanical protection is required. Following points must be considered:

- · Required tensile load
- Expected pressure on cable during service
- Protection against rodent
- · Protection against accidental damage
- Minimum required bending radius.

SWA: single layer of galvanized steel wires, with diameters according to relevant standards, coverage min. 90%. This armour assures a very good mechanical protection and tensile strength. An additional counterspiral tape increases solidity, if required.

GSWB: galvanized steel wire braid, diameter of wire: 0.20 - 0.25 - 0.30 - 0.40 mm, with coverage of >80%. It assures a good mechanical resistance, allowing a lower bending radius compared to other armour. It is preferable when there is movement or vibration.

For special application it is possible to use stainless steel, tinned copper or special alloy wires.

Conductors

Conductors can generally be according to EN 60228:

Type of conductors are chosen according to electrical characteristics, required flexibility, type of connection systems or specific installation conditions, for example:

- in presence of vibration or movement or reduced bending radius it is preferable class 5 flexible conductor,
- class 1 solid conductor is preferable for permanent installation, crimping termination,
- in presence of corrosive atmosphere, high temperature or to facilitate the soldering it is preferable tinned conductor.

Insulation

The most widespread technologies to guarantee the electric cables connection integrity during a fire is currently the following:

- ceramified silicone-rubber
- · mica-glass tape and cross-linked polyolefine

The taping with mica tape is the most typical solution; it allows the use of several insulation materials since the fire resistance is guaranteed by the tape.

The silicone rubber is currently the most frequently used solution because it simplifies and speeds up the installation, thanks to the easy peeling and to the lack of tape.

MICA-GLASS TAPE

SILICONE RUBBER

Screening

Screens are often used in instrumentation cables to prevent or reduce possible interference in cables that can be caused by the following reasons:

- · Cross-talk between adjacent pairs or triples;
- Interference induced by an external source such as electrical equipments, machinery, power line.

The most popular screen is:

ALUMINIUM/POLYESTER TAPE

with a tinned copper drain wire or earth conductor

Following screens can also been used, when required:

COPPER/POLYESTER TAPE

with a tinned copper drain wire, for a better screen effect

BARE COPPER BRAID

for electromagnetic interference or when the cable is subject to movements

Cabling

Fire resistant cables generally can be laid-up in concentric construction and in pairs.

Twisting is important to reduce noise in circuits and also the lay of twist in some constructions must be carefully considered.

Standard Cable 300/500 V

BS 5839-1:2017 Clause 26.2d

BS EN 50200:2015 (PH 30 - PH 60 - PH 120) 830°C fire and mechanical shocks

BS EN 50200:2015 + Annex E 830°C - 30 min. (15 min. fire and mechanical shocks + 15 min. fire mechanical shocks and water spray)

BS 6387:2013

Cat. C fire @ 950°C - 180 min

Cat. W fire 15 min. + fire and water spray 15 min.

Cat. Z fire and mechanical shocks @ 950°C - 15 min.fire

LPCB ref. 217f (cables up to 4 cores) For the scope of the LPCB Approval see www.redbooklive.com

For the scope of the BASEC Approval see www.basec.org.uk

APPLICATIONS

FIRECEL SR 114H are primarily intended for general application.

Typical applications are:

BS 5839-1 for standard fire resistant cables in fire detection and fire alarm systems for building

BS 5839-8 for voice alarm systems

BS 5839-9 for emergency voice communication systems.

BS 5266-1 for emergency lighting of premises (PH60)

BS 8519 for fire-resistant control cable systems for life safety and fire-fighting application - Category 1

OPERATING TEMPERATURE

-40°C to +90°C

No of cond

MINIMUM BENDING RADIUS

6 times the outer diameter.

CABLE CONSTRUCTION

Conductors

Plain annealed copper wire, solid class 1 or stranded class 2 according to EN 60228.

High performance fire resistant silicone rubber type EI2 to BS EN 50363-1.

Cahling

Insulated cores are cabled together.

Overall screen

Aluminium/polyester tape.

Circuit protective conductor or drain wire

Uninsulated tinned copper conductor of the same section and class as the insulated conductors in the 2-, 3- and 4-core cables. Drain wire of 0.5 mm2 tinned copper conductor is provided in cables with more than 4 conductors.

Outer sheath

LSZH thermoplastic material type LTS3 to BS 7655-6.1.

Colour red or white (other colours on request).

COLOUR CODE UP TO 4 CORES TO HD 308

2 cores: • • 3 cores: ● ● ● 4 cores: • • • •

7 cores: centre ●

1st laver ● • - 4 cores

12 cores: centre ● ●

1st layer ● ● - 7 cores

19 cores: centre

1st layer ● ● - 4 cores 2nd layer ● • - 10 cores

(on request the cores can be one colour only, identified by printed numbers)

APPLICABLE STANDARDS

Basic design

BS 7629-1

BS 6387 (cat. C-W-Z) BS EN 50200 (PH30 - PH60 - PH120) BS EN 50200 annex E (fire, mechanical shock and water spray)

IEC 60331

lame retardant BS EN 60332-1-2

BS EN 60332-3-24 (cat. C)

BS EN 61034-2

x cross section (mm²)	(mm)	(kg/km)
1 mm² solid		
2×1.0	7.1	70
3x1.0*	7.6	85
4×1.0*	8.3	110
7x1.0	10.0	165
12x1.0	12.5	255
19x1.0	15.0	380
1.5 mm² solid		
2x1.5	8.0	95
3x1.5	8.5	115
4x1.5	9.4	140
7x1.5	11.3	225
12x1.5	14.5	340
19x1.5	17.0	520
1.5 mm² stranded		
2x1.5	8.4	100
3x1.5	8.9	125
4x1.5	9.8	155
2.5 mm² solid		
2x2.5	9.4	130
3x2.5	10.0	170
4x2.5	11.0	210
2.5 mm² stranded		
2x2.5	9.9	145
3x2.5	10.3	180
4x2.5	11.7	230
4 mm² stranded		
2x4	11.5	200
3x4	12.2	260
4x4	13.5	330
approximate values	3	

Outer diameter

Weight.

not included in BS 7629-1:2015 and in LPCB/BASEC approval.

Enhanced Cable 300/500 V

BS 5839-1:2017 Clause 26.2e

BS EN 50200:2015 (PH 120)

830°C fire and mechanical shocks

BS 8434-2:2003 +A2:2009 930°C - 120 min. (60 min. fire and mechanical shocks + 60 min. fire mechanical shocks and water spray)

BS 6387:2013

Cat. C fire @ 950°C - 180 min

Cat. W fire 15 min. + fire and water spray 15 min.

Cat. Z fire and mechanical shocks @ 950°C - 15 min.fire

LPCB ref. 217g (cables up to 4 cores) For the scope of the LPCB Approval see www.redbooklive.com

For the scope of the BASEC Approval see www.basec.org.uk

APPLICATIONS

FIRECEL SR 114E are primarily intended for use in fire detection and fire alarm systems, emergency lighting circuits or if cables need to properly operate when fire resistance improvement is required.

Typical applications are:

BS 5839-1 for enhanced fire resistant cables in fire detection and fire alarm systems for building

BS 5839-8 for voice alarm systems

BS 5839-9 for emergency voice communication systems.

BS 5266-1 for emergency lighting of premises BS 8519 for fire-resistant control cable systems for life safety and fire-fighting application - Category 2

OPERATING TEMPERATURE

-40°C to +90°C

N° of cond.

x cross section (mm2)

MINIMUM BENDING RADIUS

6 times the outer diameter.

CABLE CONSTRUCTION

Conductors

Plain annealed copper wire, solid class 1 or stranded class 2 according to EN 60228.

Insulation

Mica/Glass fire resistant tape covered by high performance fire resistant silicone rubber type El2 to BS EN 50363-1.

Insulated cores are cabled together.

Overall screen

Aluminium/polyester tape.

Circuit protective conductor or drain wire

Uninsulated tinned copper conductor of the same section and class as the insulated conductors in the 2-. 3- and 4-core cables. Drain wire of 0.5 mm2 tinned copper conductor is provided in cables with more than 4 conductors.

Outer sheath

LSZH thermoplastic material type LTS3 to BS 7655-6.1.

Colour red or white (other colours on request).

COLOUR CODE UP TO 4 CORES TO HD 308

2 cores: • • 3 cores: ● ● ■ 4 cores: • • • • 7 cores: centre

1st laver ● ● - 4 cores

12 cores: centre ● ●

1st layer ● ● - 7 cores

19 cores: centre

1st layer ● ● - 4 cores 2nd layer ● • - 10 cores

(on request the cores can be one colour only, identified by printed numbers)

APPLICABLE STANDARDS

Basic design

BS EN 50200 annex E (fire, mechanical

shock and water spray)

IEC 60331

BS EN 60332-1-2

BS EN 60332-3-24 (cat. C)

BS EN 61034-2

x cross section (mm²)	(111111)	(kg/kiii)
1 mm² solid		
2x1.0	7.9	85
3x1.0*	8.4	105
4×1.0*	9.3	125
7x1.0	10.9	175
12x1.0	14.5	300
19x1.0	17.0	470
1.5 mm² solid		
2x1.5	8.8	105
3x1.5	9.3	130
4x1.5	10.3	165
7x1.5	12.1	230
12x1.5	16.0	380
19x1.5	19.0	590
1.5 mm² stranded		
2x1.5	9.2	110
3x1.5	9.7	135
4x1.5	10.5	170
2.5 mm² solid		
2x2.5	10.2	150
3x2.5	10.8	190
4x2.5	12.0	240
2.5 mm² stranded		
2x2.5	10.6	155
3x2.5	11.3	190
4x2.5	12.5	250
4 mm² stranded		
2x4	12.2	220
3x4	13.0	280
4x4	14.4	350

Outer diameter

(mm)

Weight

(ka/km)

not included in BS 7629-1:2015 and in LPCB/BASEC

BS 7629-1

BS 6387 (cat. C-W-Z) BS EN 50200 (PH120)

BS 8434-2 (120 min)

Acid aas emission

BS EN 60754-1

SR/OS/LSZH 300/500 V

Not Armoured

SR/OS/LSZH/SWA/LSZH 300/500 V

Armoured

APPLICATIONS

Firecel SR 125H are designed, manufactured and tested as data transmission cables for emergency services. These are used for data and voice transmission when high frequency signal has to be assured also in the event of a fire.

OPERATING TEMPERATURE

-40°C to +90°C

MINIMUM BENDING RADIUS

Not armoured type

12 times the outer diameter. **Armoured type**

15 times the outer diameter.

CABLE CONSTRUCTION

Conductors

Plain annealed electrolytic copper wire according to EN 60228 class 1(U) solid or class 2 (R) stranded.

Insulation

High performance fire resistant silicone rubber.

Twisting

The insulated cores shall be twisted in pairs for a good reduction of the electromagnetic noise.

Cabling

The pairs are cabled with suitable non hygroscopic fillers (when necessary) and wrapped with polyester tape if required.

Overall screen

Aluminium/polyester tape, coverage >100%, aluminium in contact with tinned copper drain wire.

Armoured

Inner sheath: LSZH thermoplastic material.

Armour. Single layer of galvanized steel wires (SWA).

Outer sheath

LSZH thermoplastic material.

APPLICABLE STANDARDS

Basic design BS 7629
Fire resistant IEC 60331-23
Flame retardant IEC 60332-1-2
Fire retardant IEC 60332-3-24 (cat. C)
Halogen free properties IEC 60754-1
Low smoke emission IEC 61034-2

UNARMOURED			ARMOURED		
N° of conductors x cross section (mm²)	Outer diameter (mm)	Weight (kg/km)	Diameter under armour (mm)	Outer diameter (mm)	Weight (kg/km)
0,5 mm² solid	U-SR/C	S/LSZH	U-SR/C	S/LSZH/SWA/LS	SZH
1x2x0,5	6,5	56	6,5	10,7	235
2x2x0,5	9,5	94	9,5	14,5	381
3x2x0,5	10,5	118	10,5	15,2	472
5x2x0,5	12,0	167	12,0	18,4	550
6x2x0,5	13,0	197	13,0	18,5	574
10x2x0,5	16,5	273	16,5	22,3	760
15x2x0,5	20,5	410	20,5	24,2	941
20x2x0,5	22,6	520	22,6	27,1	1146
1 mm² stranded	1 mm² stranded R-SR/OS/LSZH		R-SR/OS/LSZH/SWA/LSZH		
1x2x1	7,4	77	7,4	11,3	265
2x2x1	10,6	130	10,6	15,9	452
3x2x1	11,2	196	11,2	16,2	528
5x2x1	13,7	245	13,7	20,1	665
6x2x1	14,8	300	14,8	20,3	695
10x2x1	18,9	378	18,9	23,8	937
15x2x1	23,2	567	23,2	27,8	1368
20x2x1	26,2	831	26,2	30,9	1650
1,5 mm² stranded		S/LSZH	R-SR/OS/LSZH/SWA/LSZH		
1x2x1,5	8,7	100	8,7	12,1	305
2x2x1,5	10,2	188	10,2	17,2	525
3x2x1,5	12,9	223	12,9	16,2	614
5x2x1,5	16,7	346	16,7	22,1	794
6x2x1,5	17,5	426	17,5	22,3	845
10x2x1,5	23,4	541	23,4	27,0	1315
15x2x1,5	28,9	892	28,9	30,7	1691
20x2x1,5	32,5	1182	32,5	34,4	2075

ELECTRICAL CHARACTERISTICS				
Cross section (mm²)	0,5	1,0	1,5	
Capacitance (pF/m)	90	100	110	
L/R (µH/Ohm)	25	25	40	

MXLPE/OS/LSZH 300/500 V

Not Armoured

MXLPE/OS/LSZH/SWA/LSZH 300/500 V

Armoured

APPLICATIONS

Firecel SR 225H are designed, manufactured and tested as data transmission cables for emergency services. These are used for data, voice and signal transmission when high frequency signal has to be assured also in the event of a fire.

OPERATING TEMPERATURE

-40°C to +90°C.

MINIMUM BENDING RADIUS

Not armoured type

12 times the outer diameter.

Armoured type

15 times the outer diameter.

CABLE CONSTRUCTION

Conductors

Plain annealed electrolytic copper wire according to EN 60228 class 2 (R) stranded.

Insulation

Mica/Glass tape plus XLPE.

Twisting

The insulated cores shall be twisted in pairs for a good reduction of the electromagnetic noise.

Cabling

The pairs are cabled with suitable non hygroscopic fillers (when necessary) and wrapped with polyester tape if required.

Overall screen

Aluminium/polyester tape, coverage >100%, aluminium in contact with tinned copper drain wire.

Armoured

Inner sheath: LSZH thermoplastic

Armour: Single layer of galvanized steel wires (SWA).

Outer sheath

LSZH thermoplastic material.

APPLICABLE STANDARDS

Basic design EN 50288-7
Fire resistant IEC 60331-23
Flame retardant IEC 60332-1-2
Fire retardant IEC 60332-3-24 (cat. C)
Halogen free properties IEC 60754-1
Low smoke emission IEC 61034-2

UNARMOURED			ARMOURED		
N° of conductors x cross section (mm²)	Outer diameter (mm)	Weight (kg/km)	Diameter under armour(mm)	Outer diameter (mm)	Weight (kg/km)
0,75 mm² stranded		S/LSZH	R-mX	LPE/OS/LSZH/SW	A/LSZH
1x2x0,75	7,8	64	7,8	12,3	292
2x2x0,75	10,7	118	10,7	15,5	504
5x2x0,75	14,8	218	14,8	22,2	703
10x2x0,75	20,1	380	20,1	25,8	1005
15x2x0,75	24,9	535	24,9	31,0	1434
20x2x0,75	28,2	680	28,2	34,6	1715
1 mm² stranded		S/LSZH	R-mX	LPE/OS/LSZH/SW	A/LSZH
1x2x1	8,4	73	8,4	12,7	316
2x2x1	11,5	136	11,5	18,3	549
5x2x1	15,7	266	15,7	23,7	798
10x2x1	21,3	455	21,3	28,8	1279
15x2x1	26,5	646	26,5	32,9	1622
20x2x1	30,2	839	30,2	36,9	1971
1,5 mm² stranded		S/LSZH	R-mX	LPE/OS/LSZH/SW	A/LSZH
1x2x1,5	9,3	87	9,3	13,7	346
2x2x1,5	13,0	165	13,0	19,6	622
5x2x1,5	18,1	342	18,1	25,5	927
10x2x1,5	24,8	606	24,8	31,3	1535
15x2x1,5	30,8	862	30,8	35,8	1954
20x2x1,5	34,9	1121	34,9	40,8	2631

ELECTRICAL CHARACTERISTICS			
Cross section (mm²)	0,75	1	1,5
Capacitance (pF/m)	150	150	150
L/R (µH/Ohm)	25	25	40

approximate values

Multi-pair Individual and Overall Screen/Mica+XLPE Insulation

F-MXLPE/IS/OS/LSZH 300/500 V

Not Armoured

F-MXLPE/IS/OS/LSZH/SWA/LSZH 300/500 V

Armoured

APPLICATIONS

Firecel SR 228 are designed, manufactured and tested for Public Address/ General Alarm (PA/GA) system to significantly improve system integrity and functionality

OPERATING TEMPERATURE

-40°C to +90°C.

MINIMUM BENDING RADIUS

Not armoured type

12 times the outer diameter. **Armoured type**

15 times the outer diameter.

CABLE CONSTRUCTION

Conductors

Flexible annealed electrolytic copper wire according to EN 60228.

Insulation

Mica/Glass tape plus XLPE.

Twisting

The insulated cores shall be twisted in pairs for a good reduction of the electromagnetic noise.

Individual screen

Aluminium/polyester tape, coverage >100%, aluminium in contact with tinned copper drain wire 0,5 mm².

The screened pairs are cabled with suitable non hygroscopic fillers (when necessary) and wrapped with polyester tape if required.

Overall screen

Aluminium/polyester tape, coverage >100%, aluminium in contact with tinned copper drain wire 0,5 mm².

Armoured

Inner sheath: LSZH thermoplastic material.

Armour: Single layer of galvanized steel wires (SWA).

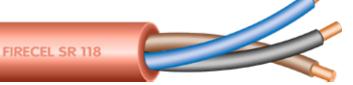
Outer sheath

LSZH thermoplastic material.

APPLICABLE STANDARDS

Basic design EN 50288-7 Fire resistant EN 50200 PH 120 Flame retardant IEC 60332-1-2 Fire retardant IEC 60332-3-24 (cat. C) Halogen free properties IEC 60754-1 Low smoke emission IEC 61034-2

UNARMOURED			ARMOURED		
N° of conductors x cross section (mm²)	Outer diameter (mm)	Weight (kg/km)	Diameter under armour(mm)	Outer diameter (mm)	Weight (kg/km)
2.5 mm ²	F-mXLPE/IS/0	DS/LSZH	F-mXLPE	E/IS/OS/LSZH/SV	VA/LSZH
1x2x2,5	9,3	120	9,3	14,1	370
2x2x2,5	14,7	270	14,7	20,0	670
4 mm ²	F-mXLPE/IS/OS/LSZH		F-mXLPE/IS/OS/LSZH/SWA/LSZH		VA/LSZH
2x2x4,0	16,7	370	16,7	22,0	820
4x2x4,0	19,8	600	19,8	25,2	1120
6x2x4,0	24,1	920	24,1	29,7	1570
6 mm²	F-mXLPE/IS/OS/LSZH		F-mXLPE/IS/OS/LSZH/SWA/LSZH		VA/LSZH
2x2x6,0	18,7	500	18,7	24,1	990


Others cross sections and formations are available on request

Silicone Insulation

FIRECEL SR 118

SR / LSZH 300/500 V

APPLICATIONS

FIRECEL SR 118 are designed, manufactured and tested as control cable for emergency services and fire circuit control.

OPERATING TEMPERATURE

- 40 °C / +90 °C

APPLICABLE STANDARDS

Basic design EN 50288-7

Fire resistant

BS 6387 (cat. C-W-Z) BS EN 50200 (class 50200 - PH 60)

IEC 60331-21

Flame retardant

BS EN 60332-1-2 IEC 60332-3-22 cat. A

Acid aas emission

BS EN 60754-1

BS EN 60754-2

Smoke density BS EN 61034-2

CABLE CONSTRUCTION

Conductors

Plain annealed copper wire, solid class 1 or stranded class 2 according to EN 60228.

Insulation

High performance fire resistant silicone rubber type El2 to BS EN 50363-1.

Cabling

Insulated cores are cabled together.

Outer sheath

LSZH thermoplastic material type LTS3 according BS 7655.

Colour red (other colours on request).

COLOUR CODE UP TO 4 CORES TO HD 308

2

N° of cores. x size	Size of conductors (n°/mm)	Outer diameter (mm)	Net Weight (kg/km)
1,5 mm² solid			
2x1.5	1/1.38	7.4	80
3x1.5	1/1.38	7.8	100
4x1.5	1/1.38	8.5	130
1.5 mm² stranded			
2x1.5	7/0.53	7.8	90
3x1.5	7/0.53	8.3	110
4x1.5	7/0.53	9.0	140
2.5 mm ² solid			
2x2.5	1/1.75	8.7	110
3x2.5	1/1.75	9.2	150
4x2.5	1/1.75	10.1	190
2.5 mm² stranded			
2x2.5	7/0.67	9.2	120
3x2.5	7/0.67	9.8	160
4x2.5	7/0.67	10.7	200
4.0 mm ² stranded			
2x4	7/0.85	10.3	160
3x4	7/0.85	11.0	220
4x4	7/0.85	12.0	280

Cables with cross section 0.5, 0.75, 1.0 sqmm can be supplied on request. Please contact our Technical Dpt. for further information on characteristics.

Mica/XLPE Insulation

FIDECEL SD 220

FIRECEL SR 220

R-mXLPE/LSZH 300/500 V

APPLICATIONS

FIRECEL SR 220 are designed, manufactured and tested for general application.

OPERATING TEMPERATURE

-40°C to +90°C

MINIMUM BENDING RADIUS

10 times the outer diameter.

CABLE CONSTRUCTION

Conductors

Plain annealed copper wire, stranded according to EN 60228 class 2.

Insulation

Mica/Glass fire resistant tape covered by extruded cross-linked XLPE compound.

Cahling

Insulated cores cabled together.

Outer sheath

NO of and various acation (mm2)

LSZH thermoplastic material. Colour orange or white (other colours on request).

COLOUR CODE TO HD 308

Without earth conductor

Above 5 cores: ● numbered

With earth conductor

3 cores: ● ● •/●
4 cores: ● ● •/●
5 cores: ● ● ● •/●

Above 5 cores: ● numbered •/●

Mainht /Im//ma

APPLICABLE STANDARDS

Basic design

EN 50288-7

Fire resistant

IEC 60331-21

Flame retardant

EN 60332-1-2 / IEC 60332-1-2

Fire retardant

EN 60332-3-24 (cat. C) IEC 60332-3-24 (cat. C)

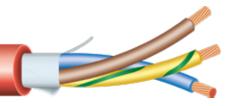
Acid gas emission

EN 60754-1 / IEC 60754-1 EN 60754-2 / IEC 60754-2

Smoke density

EN 61034-2 / IEC 61034-2

Outer diameter (mm)	Weight (kg/km)
R-mXLPI	E/LSZH
7.3	68
8.0	83
8.7	100
R-mXLPI	E/LSZH
7.9	82
8.4	96
9.4	121
11.3	174
15.1	282
18.0	424
R-mXLPI	E/LSZH
8.5	100
9.3	126
10.1	150
12.2	220
16.5	365
19.5	544
R-mXLPI	E/LSZH
9.7	139
10.4	168
11.5	206
14.0	310
18.8	514
22.4	782
	R-mXLPI 7.3 8.0 8.7 R-mXLPI 7.9 8.4 9.4 11.3 15.1 18.0 R-mXLPI 8.5 9.3 10.1 12.2 16.5 19.5 R-mXLPI 9.7 10.4 11.5 14.0 18.8



Flexible/Silicone Insulation Overall Screen

FIRECEL SR 109

FIRECEL SR 109

F-SR/OS/LSZH 450/750 V

APPLICATIONS

FIRECEL SR 109 are designed, manufactured and tested for general application in power and signal wiring, for emergency circuit and fire circuit control where high rejection of electrostatic noise is needed.

OPERATING TEMPERATURE

40°C to +90°C

MINIMUM BENDING RADIUS

8 times the outer diameter.

CABLE CONSTRUCTION

Conductors

Plain annealed copper wire, flexible according to EN 60228 class 5.

Insulation

High performance fire resistant silicone rubber.

Cabling

Insulated cores are cabled together.

Overall screen

Aluminium/polyester tape with tinned copper drain wire.

Outer sheath

LSZH thermoplastic material. Colour red (other colours on request).

COLOUR CODE

Without earth conductor

7 cores and above: • numbered

With earth conductor

3 cores: ● ● /● **4** cores: ● ● ● /● **5** cores: ● ● ● ● /●

7 cores and above: ● numbered •/●

APPLICABLE STANDARDS

Fire resistant

CEI 20-36/2-1 EN 50200 (PH120) IEC 60331-21

Flame retardant

EN 60332-1-2 / IEC 60332-1-2

Fire retardant

EN 60332-3-24 (cat.C) IEC 60332-3-24 (cat.C)

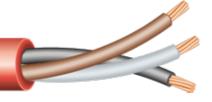
Acid gas emission

EN 60754-1 / IEC 60754-1 EN 60754-2 / IEC 60754-2

Smoke density

EN 61034-2 / IEC 61034-2

N° of cond. x cross section (mm²)	Outer diameter (mm)	Weight (kg/km)	
0.75 mm² flexible	F-SR/OS/LSZH		
2×0.75	7.6	69	
3x0.75	8.0	84	
4x0.75	8.7	103	
1 mm² flexible	F-SR/OS	S/LSZH	
2x1	8.0	78	
3x1	8.2	86	
4x1	8.9	110	
7x1	10.8	176	
12x1	13.9	275	
19x1	16.4	408	
1,5 mm² flexible	F-SR/OS	S/LSZH	
2x1.5	8.3	88	
3x1.5	8.8	112	
4x1.5	9.8	141	
7x1.5	11.7	218	
12x1.5	15.3	352	
19x1.5	18.2	535	
2.5 mm² flexible	F-SR/OS	S/LSZH	
2x2.5	9.8	123	
3x2.5	10.4	159	
4x2.5	11.4	196	
7x2.5	13.4	305	
12x2.5	17.9	505	
19x2.5	21.1	760	



FIRECEL SR 116H

Silicone Insulation

FIRECEL SR 116H

FIRECEL SR 116H

R-SR/LSZH 450/750 V

APPLICATIONS

FIRECEL SR 116H are designed, manufactured and tested for general application in power supply and signal wiring, for emergency circuit and fire circuit control.

OPERATING TEMPERATURE

-40°C to +90°C (for insulated conductors only: max 200°C).

MINIMUM BENDING RADIUS

10 times the outer diameter.

CABLE CONSTRUCTION

Conductors

Plain annealed copper wire, stranded according to EN 60228 class 2.

Insulation

High performance fire resistant silicone rubber.

Cabling

Insulated cores are cabled together.

Outer sheath

LSZH thermoplastic material. Colour red (other colours on request).

COLOUR CODE TO HD 308

Without earth conductor

Above 5 cores: ● numbered

With earth conductor

3 cores: • • •/•
4 cores: • • • •/•
5 cores: • • • •/•

APPLICABLE STANDARDS

Fire resistant

CEI 20-36/2-1 EN 50200 (PH90) IEC 60331-21

Flame retardant

EN 60332-1-2 / IEC 60332-1-2

Fire retardant

EN 60332-3-24 (cat. C) IEC 60332-3-24 (cat. C)

Acid gas emission

EN 60754-1 / IEC 60754-1 EN 60754-2 / IEC 60754-2

Smoke density

EN 61034-2 / IEC 61034-2

N° of cond. x cross section (mm ²)	Outer diameter (mm)	Weight (kg/km)		
1.5 mm2 stranded	R-SR/LSZH			
2x1.5	7.8	96		
3x1.5	8.3	116		
4x1.5	9.3	147		
5x1.5	10.5	180		
2.5 mm2 stranded	R-SR/LSZH			
2x2.5	9.2	138		
3x2.5	9.8	169		
4x2.5	11.3	222		
5x2.5	12.3	259		
4 mm2 stranded	R-SR/	LSZH		
2x4	10.5	189		
3x4	11.6	246		
4x4	12.5	299		
5x4	14.0	359		

Single Core Mica/XLPE Insulation

FIRECEL SR 112X

Twin Core
Mica/XLPE Insulation

R-mXLSZH - 450/750V

LPCB ref. 217d (only SR 112)

For the scope of the LPCB Approval see www.redbooklive.com

APPLICATIONS

FIRECEL SR 112 are designed, manufactured and tested as cable fixed or protected installation for emergency power supply, lighting and control gear.

OPERATING TEMPERATURE

-20°C to +90°C

MINIMUM BENDING RADIUS

8 times the outer diameter.

CABLE CONSTRUCTION

Conductors

Plain annealed copper wire, stranded according to EN 60228 class 2.

Insulation

Mica/Glass fire resistant tape covered by extruded cross-linked compound type EI5.

Twisting

Only for FIRECEL SR 112X two conductors are twisted.

COLOUR CODE

Single core: \bullet \bullet \bullet (other colours on request)

Twin core: ● ● (other colours on request)

APPLICABLE STANDARDS

Basic design BS 8592

Fire resistant

IEC 60331-21 BS EN 50200 PH 120 BS EN 50200 + Annex E BS 6387 Cat. C-W-Z BS 8434-2 (tested in steel conduit)

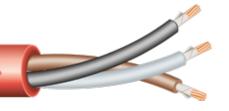
Acid gas emission

EN 60754-1 / IEC 60754-1 EN 60754-2 / IEC 60754-2

Smoke density

EN 61034-2 / IEC 61034-2

Cross section (mm²)	Outer diameter (mm) Weight (kg/km)			
	SR 112			
single core	R-mXLSZH			
1.5	4.1	30		
2.5	4.7	45		
4	5.2	60		
6	5.8	90		
10	7.1	140		
16	7.7	200		
25	9.4	300		


	SR 112X		
twin core		LSZH	
2x1.5	8.2	60	
2x2.5	9.4	90	
2x4 2x6	10.4	120	
2x6	11.6	180	
2x10	14.2	280	
2x16	15.4	400	
2x25	18.8	600	

Mica/XLPE Insulation

FIRECEL SR 206

FIRECEL SR 206

R-mXLPE/LSZH 0.6/1 kV

APPLICATIONS

Power supply and signal transmission, indoors or outdoors even wet environment. For fixed laying in free air, in pipe or conduit, on masonry and metal structures or suspended. In places where in case of fire people are exposed to serious risks due to the emission of smoke, toxic and corrosive gases and where you want to avoid damage to facilities, equipment, goods. Suitable for feeding of: emergency exits, alarm signals, warning of smoke or gas, escalators. Suitable for laying underground direct or indirect.

OPERATING TEMPERATURE

-40°C to +90°C

MINIMUM BENDING RADIUS

10 times the outer diameter.

CABLE CONSTRUCTION

Conductors

Plain annealed copper wire, stranded according to EN 60228 class 2.

Insulation

Mica/Glass fire resistant tape covered by extruded cross-linked XLPE compound.

Cabling

Insulated cores are cabled together.

Outer sheath

LSZH thermoplastic material type ST8. Colour red (other colours on request).

COLOUR CODE TO HD 308

Without earth conductor

With earth conductor3 cores: ● ● ○/●4 cores: ● ● ○/●5 cores: ● ● ○/●

APPLICABLE STANDARDS

Basic design IEC 60502-1
Fire resistant IEC 60331-21
Flame retardant IEC 60332-1-2
Fire retardant IEC 60332-3-24 (cat. C)
Acid gas emission IEC 60754-1
Smoke density IEC 61034-2

N° of cond. x cross section (mm ²)	Outer diameter (mm)	Weight (kg/km)	
1.5 mm² stranded	R-mXLPE/LSZH		
2x1.5	10.4	145	
3x1.5	10.9	167	
4x1.5	11.8	196	
5x1.5	12.9	226	
2.5 mm² stranded	R-mXLPE	E/LSZH	
2x2.5	11.2	180	
3x2.5	11.8	209	
4x2.5	12.8	250	
5x2.5	14.0	289	
4 mm² stranded	R-mXLPI	E/LSZH	
2x4	12.3	230	
3x4	13.0	275	
4x4	14.1	331	
5x4	15.5	387	
6 mm² stranded	R-mXLPI	E/LSZH	
2x6	14.6	329	
3x6	15.5	397	
4x6	16.9	482	
5x6	18.6	565	
10 mm² stranded	R-mXLPI	E/LSZH	
2x10	16.4	450	
3x10	17.4	554	
4x10	19.1	682	
5×10	21.0	805	
16 mm² stranded	R-mXLPI		
2x16	18.5	619	
3x16	19.7	777	
4x16	20.3	1050	
5x16	23.9	1208	
25 mm² stranded	R-mXLPI		
2x25	22.0	914	
3x25	23.5	1161	
4x25	26.0 1500		
5x25	28.7	1700	
approximate values			

FIRECEL SR 106H

Silicone Insulation

FIRECEL SP 104H

FIRECEL SR 106H

SR/LSZH 0.6/1 KV

APPLICATIONS

Power supply and signal transmission, indoor or outdoor even wet environment. For fixed laying in free air, in pipe or conduit, on masonry and metal structures or suspended. In places where in case of fire people are exposed to serious risks due to the emission of smoke, toxic and corrosive gases and where you want to avoid damage to facilities, equipment, goods. Suitable for feeding of: emergency exits, alarm signals, warning of smoke or gas, escalators. Suitable for laying underground direct or indirect.

OPERATING TEMPERATURE

-40°C to +90°C (for insulated conductors only: max 200°C).

MINIMUM BENDING RADIUS

15 times the outer diameter

CABLE CONSTRUCTION

Conductors

Plain annealed copper wire, stranded class 2 for section up to 10 mm2 or flexible class 5 for section above 10 mm2 according to EN 60228.

Insulation

High performance fire resistant silicone rubber.

Cabling

Insulated cores are cabled together.

Outer sheath

Extruded LSZH thermoplastic material. Colour red (other colours on request).

COLOUR CODE TO HD 308

Without earth conductor

2 cores: • • • 3 cores: • • • • 4 cores: • • • • • • 5 cores: • • • • •

With earth conductor **3** cores: ● ● //●

4 cores: ● ● ● /● **5** cores: ● ● ● /●

APPLICABLE STANDARDS

Fire resistant EN 50200 (PH90) / IEC 60331-21 /

BS 6387 (cat. C-W-Z) / SS 299 part 1

Flame retardant EN 60332-1-2 / IEC 60332-1-2

Fire retardant EN 60332-3-24 (cat. C) / IEC 60332-3-24 (cat. C)

Acid gas emission EN 60754-1 / IEC 60754-1 EN 60754-2 / IEC 60754-2

Smoke density EN 61034-2 / IEC 61034-2

N° of cond. x cross section (mm²)	Outer diameter (mm)	Weight (kg/km)		
1.5 mm² stranded	R-SR/LSZH			
2x1.5	9.2	124		
3x1.5	9.8	148		
4x1.5	10.6	176		
5x1.5	11.5	214		
2.5 mm² stranded	R-SF	R/LSZH		
2x2.5	10.0	155		
3x2.5	10.6	188		
4x2.5	11.5	228		
5x2.5	12.6	266		
4 mm² stranded	R-SF	R/LSZH		
2x4	11.2	207		
3x4	12.1	263		
4x4	13.6	332		
5x4	14.5	399		
6 mm² stranded	R-SF	R/LSZH		
2x6	13.1	298		
3x6	14.4	372		
4x6	15.8	463		
5x6	17.6	576		
10 mm² stranded	R-SF	R/LSZH		
2x10	15.9	441		
3x10	16.8	541		
4x10	18.5	680		
5x10	20.5	850		
16 mm² flexible	F-SR	/LSZH		
2x16	17.4	602		
3x16	19.4	777		
4x16	21.2	973		
5x16	23.3	1202		
approximate values				

R-mXLPE/LSZH/SWA/LSZH 0.6/1 kV

APPLICATIONS

Power supply and signal transmission, indoors or outdoors even wet environment. For fixed laying in free air, in pipe or conduit, on masonry and metal structures or suspended. In places where in case of fire people are exposed to serious risks due to the emission of smoke, toxic and corrosive gases and where you want to avoid damage to facilities, equipment, goods. Suitable for feeding of: emergency exits, alarm signals, warning of smoke or gas, escalators. Suitable for laying underground direct or indirect.

OPERATING TEMPERATURE

-40°C to +90°C

MINIMUM BENDING RADIUS

12 times the outer diameter.

CABLE CONSTRUCTION

Conductors

Plain annealed copper wire, stranded according to EN 60228 class 2.

Insulation

Mica/Glass fire resistant tape covered by extruded cross-linked XLPE compound.

Cabling

Insulated cores are cabled together.

Bedding

LSZH thermoplastic material.

Armour

Single layer of galvanized steel wires (SWA).

Outer sheath

LSZH thermoplastic material. Colour black (other colours on request).

COLOUR CODE TO HD 308

2 cores: • • • 3 cores: • • • • 4 cores: • • • • 7 cores: numbered

APPLICABLE STANDARDS

Basic design BS 7846

Fire resistant

BS 7846 (cat. F2) / BS 6387 (cat. C-W-Z) / BS EN 50200 (PH60)

BS 8491

Flame retardant EN 60332-1-2
Fire retardant EN 60332-3-24 (cat. C)
Acid gas emission EN 60754-1
Smoke density EN 61034-2

Diameter under armour (mm)	Outer diameter (mm)	Weight (kg/km)	
R-m	nXLPE/LSZH/SWA/LSZ	Н	
8.8	13.8	364	
9.8	14.8	418	
10.6	15.6	460	
12.8	18.2	607	
		988	
		1390	
		1760	
		2175	
R-n	nXLPE/LSZH/SWA/LSZ	H	
9.6	14.6	416	
10.7	15.7	480	
		514	
		818	
		1312 1705	
		2180	
		2950	
11.1	16.1	510	
11.8	16.8	570	
12.9	17.9	649	
15.6	21.7	1004	
20.9	28.1	1642	
R-n	nXLPE/LSZH/SWA/LSZ	Н	
12.3	17.3	600	
13.1 18.1	18.1	680	
14.4	20.5	927	
R-n	nXI PE/I S7H/SWA/I S7	Н	
		800	
		1078	
		1256	
1111			
		1034	
		1354	
		1625	
R-n	nXLPE/LSZH/SWA/LSZ	Н	
20.3	26.6	1530	
21.8	28.8	1972	
24.1	31.3	2355	
R-n	nXLPE/LSZH/SWA/LSZ	н	
		2055	
		2450	
21.0	01.7	2 100	
	8.8 9.8 10.6 12.8 16.8 19.4 23.3 26.4 R-r 9.6 10.7 11.2 13.8 18.2 21.4 25.8 29.2 R-r 11.1 11.8 12.9 15.6 20.9 R-r 12.3 13.1 14.4 R-r 14.9 16.1 17.7 R-r 17.1 18.3 20.2 R-r 20.3 21.8 24.1	R-mXLPE/LSZH/SWA/LSZ 8.8 9.8 14.8 10.6 15.6 12.8 18.2 16.8 23.1 19.4 26.4 23.3 30.5 26.4 34.0 R-mXLPE/LSZH/SWA/LSZ 9.6 14.6 10.7 15.7 11.2 16.2 13.8 19.9 18.2 25.4 21.4 28.8 25.8 33.4 29.2 37.8 R-mXLPE/LSZH/SWA/LSZ 11.1 16.1 11.8 16.8 12.9 17.9 15.6 21.7 20.9 28.1 R-mXLPE/LSZH/SWA/LSZ 12.3 13.1 18.1 14.4 20.5 R-mXLPE/LSZH/SWA/LSZ 14.9 19.9 16.1 22.2 17.7 23.8 R-mXLPE/LSZH/SWA/LSZ 17.1 22.5 18.3 24.4 20.2 26.5 R-mXLPE/LSZH/SWA/LSZ 20.3 26.6 21.8 28.8 24.1 31.3 R-mXLPE/LSZH/SWA/LSZ 22.7 29.9	

FIRECEL LAN 6

SF/UTP FRNC-LSZH fire resistant 4x2xAWG22/1 Cat.6 (up to 250 MHz)

N 6 FIRECEL LAN 6

FIRECEL LAN 6

LPCB ref. 217m

For the scope of the LPCB Approval see www.redbooklive.com

APPLICATIONS

Signal transmission, indoor installation in places where in case of fire people are exposed to serious risks for emission of smoke, toxic and corrosive gases and where you want to avoid damage to facilities, equipment, goods. This type of cable is used in structured cabling for computer networks such as Ethernet.

OPERATING TEMPERATURE

-20°C to 70°C

MINIMUM BENDING RADIUS

15 times the outer diameter

CABLE CONSTRUCTION

Conductors

Plain annealed copper wire, solid AWG22/1

Insulation

Polyolefin

Fire barrier

Special mineral glass tape, wrapped on each insulated conductor

Twisting

The insulated cores shall be twisted in pairs and wrapped with glass fibre tape.

Cabling

The pairs are cabled together around a central cross separator filler

Overall screen

Copper/polyester tape, outside in contact with a bare copper braid .

Outer sheath

LSZH thermoplastic material, red colour

Nom. Outer diameter

10.6 mm

COLOUR CODE TO HD 308

1st pair: • /•
2nd pair: • /•
3rd pair: • /•
4th pair: • /•

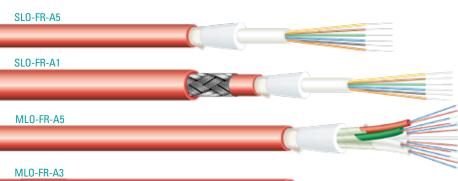
APPLICABLE STANDARDS

Standard reference IEC 61156-5; EN 50288-5-1; EN 50289-4-16;

ISO/IEC 11801; EN 50173; EN 50200 Flame retardant IEC 60332-1-2 Fire retardant IEC 60332-3-24 (cat. C) Fire resistant BS EN 50200 (class PH120) Acid gas emission: BS EN 60754-1 BS EN 60754-2

Smoke density BS EN 61034-2

ELECTRICAL CHARACTERISTICS


Max DC conductor resistance 59,4 Ω /km Max operating voltage 125 Vac Min insulation resistance 2,0 G Ω x km Capacitance @800 Hz 65 pF/m Characteristic Impedance 100 Ω (± 15%) Velocity of propagation 66% Delay skew 20 nsec/100 m

SLO/MLO

Loose Buffered Cables

SINGLE TUBE

SLO-000-**-M1-A5-FR SLO-000-**-M1-A1-FR

MULTI TUBE

MLO-000-**-M1-A5-FR MLO-000-**-M1-A3-FR

APPLICATIONS

These cables are used inside buildings, tunnels or closed areas in general, also for outdoor application for instrumentation and Oil & Gas applications.

OPERATING TEMPERATURE

-40°C to +90°C

MINIMUM BENDING RADIUS

10 times the outer diameter.

CABLE CONSTRUCTION

Fibres

Singlemode and multimode fibres, with loose technology coating.

Structure

- For type SLO-FR the jelly filled tube containing the fibres is reinforced with glass yarns and is wound with a flame resistant tape.
- For type MLO-FR the jelly filled tubes containing the fibres are individually wound with a mica tape and are cabled around a central steel or FRP (fibreglass reinforced plastic) element. When necessary glass yarn is the traction element. A flame resistant tape improves fire resistance.

Inner sheath

(only for A1 and A3 armoured cables) LSZH thermoplastic compound.

Armouring

A1 Galvanized steel wire braid A3 Corrugated steel tape A5 Anti-rodent glass yarns

Outer sheath

LSZH thermoplastic compound. Colour red (other colours on request).

APPLICABLE STANDARDS

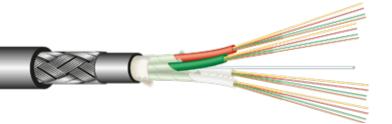
Basic design BS 7629
Fire resistant BS 6387 – CWZ
Fire resistant IEC 60331-25
Flame retardant IEC 60332-1-2
Fire retardant IEC 60332-3-24 (cat. C)
Acid gas emission: BS EN 60754-1
BS EN 60754-2

Smoke density IEC 61034-2

AVAILABLE UPON REQUEST

Armouring

A7 - Steel wire armour


	Tube diameter (mm)	Outer diameter (mm)	Weight (kg/km)		
-**- number of fibres	SLO-000-**-M1-A5-FR				
2 ÷ 12	2.7	8.0	70		
16 ÷ 24	3.5	9.0	80		
-**- number of fibres					
2 ÷ 12	2.7	11.5	160		
16 ÷ 24	3.5	180			
-**- max number of fibres	MLO-000-**(n)-M1-A5-FR				
72	2.0	230			
96	2.0	16.5	250		
144	2.0	280			
-**- max number of fibres	MLO-000-**(n)-M1-A3-FR				
72	2.0	15.0	280		
96	2.0	17.5	310		
144	2.0	21.5	350		

QFCI/QFCUMultiloose

Approved by:

MLO-000-**-M1-A1-FR-QFCI/QFCU

APPLICATIONS

- Safety Systems, Critical Connections and Fire Fighting Systems
- Outdoor installation in Off-shore, Oil & Gas and Marine applications
- Data transmission and telecommunication systems

OPERATING TEMPERATURE

-40 °C / + 70 °C (operating)

-40 °C / + 70 °C (storage)

-10 °C / + 70 °C (installation)

MINIMUM BENDING RADIUS

20 times overall diameter (dynamic) 10 times overall diameter (static)

CABLE CONSTRUCTION

Fibres

Singlemode and multimode fibres, with loose technology coating.

Structure

The jelly filled tubes containing the fibres are individually wound with a mica tape and are cabled around a central steel or FRP (fibreglass reinforced plastic) element. A flame resistant tape improves fire resistance.

Inner sheath

LSZH (M1) compound.

Armouring

A1 Galvanized steel wire braid

Outer sheath

QFCI type: LSZH - SHF1 (M1) compound

QFCU type: oil and mud resistant LSZH - SHF2 (M1) compound

APPLICABLE STANDARDS

Optical fibre characteristics

IEC 60793-1

Optical fibre cable characteristics

IEC 60793-1

Fire Resistant

IEC 60331-25 EN 50200 PH30/PH120

Fire retardant

IEC 60332-3 EN 60332-3

Flame retardant

IEC 60332-1-2 EN 60332-1-2

Acid gas emission:

EN 60754-1 / IEC 60754-1 EN 60754-2 / IEC 60754-12

Smoke density

IEC 61034-2 EN 50268-2

Cables for offshore installation

NEK 606

Туре	Fibre (n° max)	Tube Diameter (mm)	Diameter (mm)	Weight (kg/km)	Tension load (N)	Crush (N/100mm)
MLO-000-**(n)-M1-A1-FR-QFCI/QFCU	4	2.0	13.5	230	1500	3000
MLO-000-**(n)-M1-A1-FR-QFCI/QFCU	8	2.0	13.5	230	1500	3000
MLO-000-**(n)-M1-A1-FR-QFCI/QFCU	12	2.0	13.5	230	1500	3000
MLO-000-**(n)-M1-A1-FR-QFCI/QFCU	24	2.0	13.5	230	1500	3000
MLO-000-**(n)-M1-A1-FR-QFCI/QFCU	48	2.0	13.5	230	1500	3000

approximate values

Conducting Value

CAVICEL SpA Via Caduti del Lavoro, 18/A 20096 Pioltello (Milano)

ph. +39 - 02 - 921.605.21 fax +39 - 02 - 921.607.53 e-mail: cavicel@cavicel.com

DUBAI BRANCH OFFICE

Fortune Executive Tower Office 406 - Plot No. T1 Jumeirah Lakes Towers Dubai - UAE - PO Box 634377 ph. +971 4.4581199 fax +971 4.4581144

e-mail: middleeast@cavicel.com

HONG KONG OFFICE

2/F, AXA Southside Building 38 Wong Chuk Hang Road Hong Kong Ph: +852 3963 9365

e-mail:apac@cavicel.com

www.cavicel.com

MADE IN ITALY